

MBC-AN-LAB

Operating Manual

Version 2.0

Content

Legal Notice	
About this Manual	3
Purpose	
Audience	3
Prerequisites	4
Terms and Symbols in this Manual	4
Electrical safety	4
Contacting iXblue	4
General Information	5
Product Overview	5
Principle of operation	5
Standard Specifications	7
Panel features	•
Fallel lealures	ð
Front panel	
Front panel	
Front panel	
Front panel Back panel Getting started	8 9 9 9
Front panel Back panel Getting started Standard Accessories	8 9 9 9 9
Front panel Back panel Getting started Standard Accessories Installation and set up	
Front panel Back panel Getting started Standard Accessories Installation and set up Operation	
Front panel	
Front panel	
Front panel	

北京波威科技有限公司

Beijing Wave Optics Co.,Ltd

北京波威科技有限公司 Beijing Wave Optics Co.,Ltd

Legal Notice

Disclaimers

No warranty: This documentation is provided « as is » without any express or implied warranty of any kind.

Limitation of Liability: Photline does not assume any liability arising out of the application or use of any products, or software described herein. In no event shall Photline be liable for any damage whatsoever (including, without limitation, consequential or incidental damages, damages for lot of profits, or otherwise) arising out of the use of the information provided in this documentation.

The content of this publication has been carefully checked for accuracy. However, Photline makes no warranty as to the completeness, correctness, or accuracy of the information contained within this documentation. In the interest of continued product improvement, Photline further reserves the right to make any change in any products describers herein without notice. This publication is subject to change without notice.

About this Manual

Purpose

The purpose of this instruction manual is to explain how to set up the MODBOX and to utilize the various features of the product.

Audience

This manual is aimed at professionals with the necessary technical background and prerequisites needed to use fiber optics equipment, including lithium niobate modulators, and the related tests equipment and accessories.

北京波威科技有限公司

Beijing Wave Optics Co.,Ltd

Prerequisites

Reader is assumed to be familiar with and fiber optics technology.

Terms and Symbols in this Manual

The following terms and symbols may appear throughout this manual:

WARNING: Warning statement identifies conditions or practices that could result in injury or loss of life.

CAUTION: Caution statement identify conditions or practices that could result in damage to this product or other property

Electrical safety

WARNINGOperate under the proper environmental conditionsWARNINGThe MBC-AN-Board is designed for indoor use. To avoid injuries, do not
expose this instrument to water or excessive moisture. Do not operate the
board in the presence of flammable gases or fumes.

Contacting iXblue

For application oriented or service related requests, please contact iXblue customer service department:

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

contact@ixblue.com

General Information

Product Overview

MBC-AN-Board is a bias controller specially designed to lock the operating point of a $LiNbO_3$ Mach-Zehnder modulator by monitoring the bias voltage applied on the DC electrodes of the device.

Unlike classical dither signal based bias controllers, MBC-AN-board does not superimpose any tone signal to the optical modulated signal. It is designed for application where such a tone signal is not desired and typically for analog applications where a high purity carrier is required.

Principle of operation

The MBC-AN bias controller is based on the comparison of the optical power before and after the Mach-Zehnder modulator. It uses optical tap couplers and photodiodes with a proportional integrator feedback loop to lock the operating point of the modulator at the Quad+ or Quad- position.

The MBC-AN-BT is operated with a user supplied PC. It comes with a Windows graphical user interface.

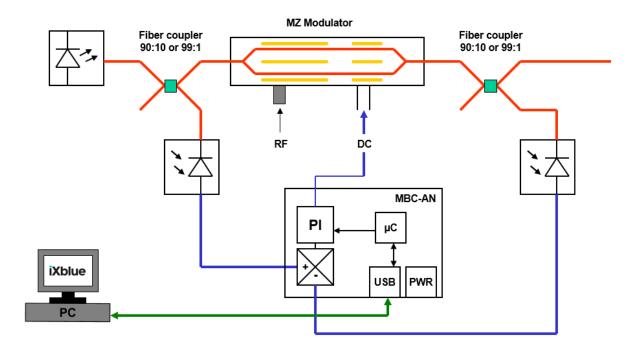


Figure 1: basic scheme of a modulation set-up including a modulator bias controller and 2 external monitoring photodiodes

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

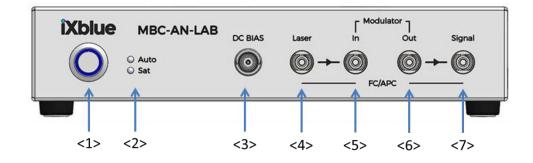
A fiber coupler with a strong imbalance (10:90 or 1:99) is placed between the Mach-Zehnder modulator and the laser. At the output of the coupler a photodiode is used to monitor the average optical power emitted by the laser. The RF signal is applied to the RF electrodes. At the output of the MZ modulator, a fiber coupler with a strong imbalance (10:90 or 1:99) allows to detect a small portion of the transmitted light thanks to a monitoring photodiode. The signal from the photodiode is amplified and compared with the signal coming from the laser monitoring photodiode. The discrepancy between both signals are integrated and injected into the DC electrodes of the modulators in order to maintain the operating point at the desired position.

The principle of operation of the MBC-AN is based on a proportional integrator feedback loop. It has been design only for locking the operating point at Quad+ or Quad-.

北京波威科技有限公司 Beijing Wave Optics Co.,Ltd

Standard Specifications

Input Signals Specifications	Units	Min	Тур	Max
Electrical				
Modulator Bias voltage	V	-12		+12
Photodiode Bias Voltage	V		-5	
Bias voltage step (in manual mode)	V	0.002	0.01	
Locking point (Transfert level)	C	UAD-(-50%),	QUAD+(+50%	o)
Environmental				
Operating temperature	°C	+10		+45
Storage Temperature	°C	-40		+75
Power supply				
Positive bias voltage	V	0	+12	+15
Negative bias voltage	V	-15	-12	0
90-250V, 50/60Hz AC power supply		Prov	vided	
Interfaces				
Photodiode Input /coupler input		FC/APC	connector	
Bias Output		BNC Fema	le connector	
Communication		USB Co	onnector	
Environmental				
Operating temperature	°C	+10		+45
Dimensions				
LAB		220 x 220) x 52mm³	
Software (GUI)				
Minimum computer requirements		One U	s XP SP3 SB port	
Recommended computer configuration			s XP SP3 SB port	



北京波威科技有限公司 Beijing Wave Optics Co.,Ltd

Panel features

网址:www.boweiinc.com

Front panel

<1> Power button

<2> Control LED

- Auto: MBC is in Auto Mode
- Sat: MBC bias control voltage is saturating

<3> Bias Modulator connector (BNC)

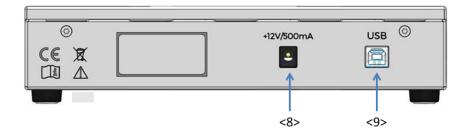
<4>: Laser optical input

- Input, fiber from laser output (coupler option)
- Input, part of laser power (no coupler option)
- <5>: Modulator optical input (optional)

Output of the first integrated coupler, to the input optical fiber modulator

- <6>: Modulator optical output
 - Input, fiber from modulator output (coupler option)
 - Input, part of modulator output power (no coupler option)
- <7>: Signal (optional)

Output of the second integrated coupler, working signal.


北京波威科技有限公司

Beijing Wave Optics Co., Ltd

Back panel

<8> Power supply connector (Jack 3.5mm, 12V 500mA)

<9> USB connector

Getting started

Standard Accessories

User Manual Interface User Manual Cord Kit USB Cord AC-DC Power Supply

Installation and set up

To set-up the MBC-AN-Board for your application you have to install the MBC-AN control software.

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

Preliminary: MBC Interface software installation

Minimum computer requirements:

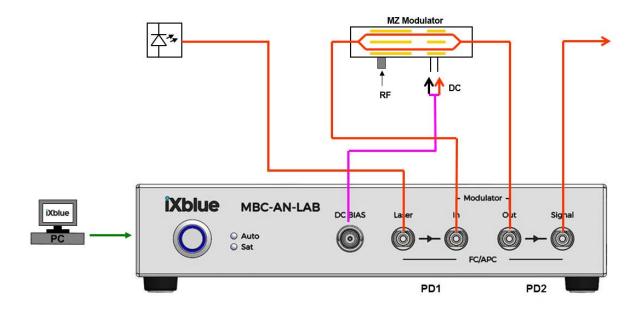
- Windows XP/Vista/7
- USB port

Installation: Install the USB driver (PhotlineUSBinstaller.exe), and then launch the setup.exe present on the CD.

京波威科技有限公司

Wave Optics Co

The MBC interface software is now installed and ready to be used.

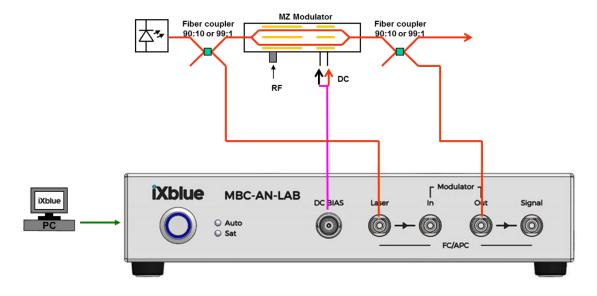

Operation

Quick start procedure

Your MBC-AN-Board has been carefully mounted so that you just need to set the correct adjustments with the windows interface to get going. You basically just need to plug the +12V/0/-12V supply (<3> or <4>) and connect the inputs (<1> and <2>) and the outputs (<9>). You will find a quick start procedure below:

- 1. Make sure you received all the ordered parts
- 2. Proceed to the MBC-AN-Board system installation
- 3. Connect the board to the power supply
- 4. Connect the PD2 output connector (Signal) to a power meter using an optical fiber. Then plug the modulator output connector to the PD2 input connector. Plug the modulator input connector to the PD1 output connector. And plug the laser connector to the PD1 input connector. Connect the Vbias connector to the modulator Vbias pin, and the ground connector to the modulator ground.

Setup with an internal coupler (coupler option):



北京波威科技有限公司

Beijing Wave Optics Co.,Ltd

Setup with an external coupler (no coupler option):

北京波威科技有限公司

Wave Optics Co.,Ltd

- 5. When you are done, start the laser
- 6. Start the MBC-AN windows control interface
- 7. Select the device
- 8. Select manual mode and adjust Vbias Mod (can go positive or negative) to get the maximum optical power at the input of your power meter

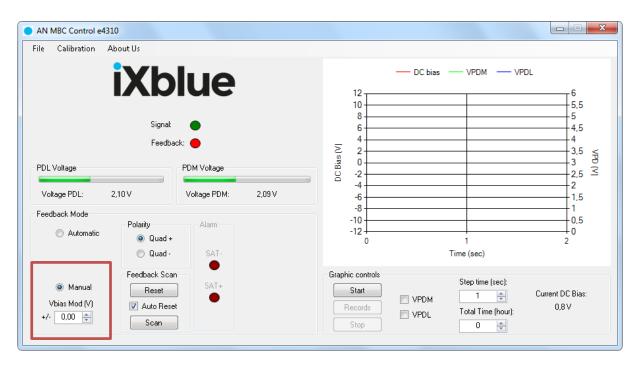


Figure 2: Manual mode selection

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

9. When done check Automatic

AN MBC Control e431	bout Us						
	iXbl	ue		12	— DC bias		6
	Signal: Feedback:	•					5.5 5 4.5 4.5 3.5 ≤
PDL Voltage Voltage PDL: 2		DM Voltage /oltage PDM:	2,06 V	DC Bias (V) -2 -4 -6 -6			3.5 ≤ pp 3 2.5 ≤ 2 1,5
Southeast Mode	Polarity Quad + Quad -	Alarm SAT-		-8 -10 -12 0		1 Time (sec)	1 0,5 0 2
 Manual Vbias Mod (V) +/- 0.00 (*) 	Feedback Scan Reset ✓ Auto Reset Scan	SAT+		Graphic controls Start Records Stop	VPDM	Step time (sec): 1 Total Time (hour): 0	Current DC Bias: -6,4 V

Figure 5: Automatic Mode selection

- 10. Check the Reset button to restart the integrator
- 11. The board should be in quad mode

Remarks:

1. If needed the MBC-AN-BOARD can be used as a manual modulator bias source by selecting the manual mode.

AN MBC Control e4	310						
File Calibration	About Us						
	iXb	lue		12 10	DC bias		6 5.5 5
	Signal:	•		6			4,5
	Feedbac	k: 🔴		Ξ 2 Ξ			4 3.5 ≤
PDL Voltage Voltage PDL:	2,10 V	PDM Voltage Voltage PDM:	2,09 V	2 DC Bias (V			3 g 2.5 ≤ 2
Feedback Mode	2,10 4	Vollage F 200.	2,03 V	-6			1,5
C Automatic	Polarity	Alarm SAT-		-10 -12 0		1 Time (sec)	0.5
	Feedback Scan Reset ✓ Auto Reset Scan	SAT+		Graphic controls Start Records Stop	VPDM	Step time (sec):	Current DC Bias: 0,8 V

Figure 6: Manual mode selection

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

2. You can lock the MBC-AN next to the quad point with the "Scan" function.

AN MBC Control e4310	
File Calibration About Us	
iXblue	
Signal:	6 4.5
Feedback: 🔴	≥ 4 4 3.5 ≤
PDL Voltage PDM Voltage Voltage PDL: 2,11 V Voltage PDM: 2,06 V	≥ 2 3.5 ≤ p Bigs 0 3.5 ≤ p ∪ -2 2.5 ≤ -4 -2 -6 1.5
Feedback Mode	-81
Automatic Polarity Alarm Quad + Quad - SAT-	-10 -12 0 1 Time (sec)
Feedback Scan	Graphic controls
Manual Reset SAT+ Vbias Mod (V) ☑ Auto Recet Scan	Stat VPDM 1 Current DC Bias: Records VPDL Total Time (hour): -6,4 V Stop 0 •

3. In the case the MBC-AN-BOARD is not able to lock on the quad point, you have to calibrate your MBC-AN-BOARD by using the Calibration menu in the Control interface.

Calibrating the board

The Calibration mode is used, when you need to set-up the board, for example when you change the modulator.

1. Select the Calibration Menu in the toolbar. Then enter the following password: trepxe

Password		×
01	(Annuler
	`	Annaler

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

ile Calibration A	About Us						
	iXblu	Je		12 10 8	— DC bias		6 5.5 5
	Signal: 🔵			6			4,5
	Feedback: 🔵			≥ 2			4 3,5 ≤
PDL Voltage Voltage PDL:		I Voltage tage PDM:	2,06 V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3.5 ≤ p 3 2.5 ≤ 2.5 ≤ 1.5
Feedback Mode	Polarity	Alarm		-8			1 0,5
 Automatic 	 Quad + 	Alam		-12		1	0 2
	🔘 Quad -	SAT-		Ū		Time (sec)	2
		•		Graphic controls			
	Feedback Scan			andphile controls			
🔘 Manual	Feedback Scan Reset	SAT+		Start	VPDM	Step time (sec):	Current DC Bias:

Figure 8: Calibration mode selection

2. Select manual mode and adjust Vbias Mod (can go positive or negative) to get the maximum optical power at the input of your power meter.

AN MBC Control e ⁴							
File Monitoring	About Us						
	iXbl	ue		12 10	— DC bias		6 6 5.5
PDL Gain Settings	PD	M Gain Settings		8			5
Coarse	Fine	Coarse	Fine	6			4.5
3,0 🚔	44,0 🚔	100,0 🚔	90,0 🚔	≥ 4 ≥ 2			4 3,5 ≤
PDL Voltage	PD	M Voltage		2 2 Bias (C Bias (C Bias (C Bias (C C C C C C C C C C C C C C C C C C C			3.5 ₅P 3 € 2,5 ≤
Voltage PDL:	2,11 V V	oltage PDM: 2,	,09 V	-4			2
Set Point	Feedback Mode			-8			0.5
PDL	Automatic	Polarity	Alarm	-12			0,5
0.5.1.40	Automatic	💿 Quad +		0		1	2
🔘 Ext. Laser (V)	Loop Gain Sens	🔘 Quad -	SAT-			Time (sec)	
Vitual PD	33 🚔 30 🚔						
0,00 🚔		Feedback Scan		Graphic controls		Step time (sec):	
	Manual	Reset	SAT+	Start		1	Current DC Bias:
Eeprom	Vbias Mod (V)	Auto Reset	-	Records	VPDM		0,8V
Save	+/- 0,00 🚔	Scan		Stop	VPDL	Total Time (hour):	

Figure 9: Manual mode selection

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

3. Change the coarse gain in the PDM (PhotoDiode Modulator) settings box to get a value around 3.5V in the PDM voltage box, and adjust with fine gain.

AN MBC Control et File Monitoring	4310 About Us						
File Montoning	iXbl	ue		12	DC bias	VPDM VPD	6
PDL Gain Settings Coarse 3,0 -	Fine 44,0 💌	100,0 🚔 🧐	=ine 30,0 ♀ 39,V	D Bias 0 0 0 0 0 0 0 0 0 0 0 0 0			5.5 5 4.5 4 3.5 ¥P 2.5 ≦ 2 1.5
Set Point PDL Ext. Laser (V)	Feedback Mode		Alarm SAT-	-8 -10 -12 0		1 Time (sec)	1 0,5 0 2
Vitual PD 0,00 - Eeprom Save	33 🗼 30 ◎ Manual Vbias Mod (V) +/- 0,00 👘	Feedback Scan Reset V Auto Reset Scan	SAT+	Graphic controls Start Records Stop	VPDM	Step time (sec):	Current DC Bias: -6,1 V

Figure 3: PDM adjustment

Change the coarse gain in the PDL (PhotoDiode Laser) settings box to get a value around 1.75V in the PDM voltage box, and adjust with fine gain. (PDL voltage = PDM voltage / 2)

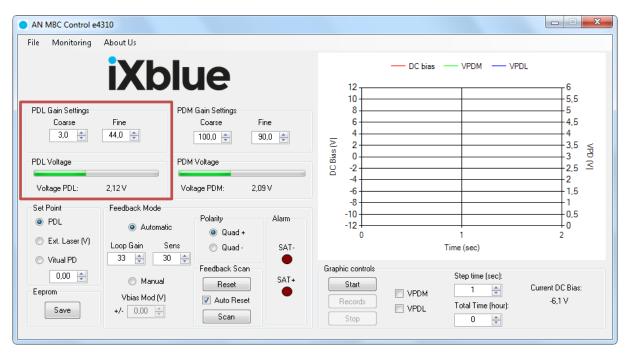


Figure 4: PDL adjustment

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

4. When done check Automatic

AN MBC Control et	4310						
File Monitoring	About Us						
	iXblu	Je		12 10	DC bias		L 6 5.5
PDL Gain Settings	PDM	Gain Settings		8			
Coarse	Fine	Coarse F	Fine	6			4,5
3,0 🊔	44,0 🚔	100,0 崇	90,0 🚔	≥ 4 ≥ 2			4 3,5 ≤
PDL Voltage	PDM	Voltage		2 DC Bias (V			3,5 ≤P 3 2,5 ≤
Voltage PDL:	2,12 V Vol	tage PDM: 2,0)9 V	-4			2
Set Point	Feedback Mode			-8			1
PDL	 Automatic 	Polarity	Alarm	-10		1	0,5
) Ext. Laser (V)	Loop Gain Sens	◯ Quad ·	SAT-	0		Time (sec)	2
Vitual PD	33 🊔 30 🚔	Feedback Scan		Graphic controls			
0,00 🚖	Manual		SAT+			Step time (sec):	
Eeprom		Reset	•	Start	VPDM	1 🚔	Current DC Bias:
	Vbias Mod (V)	🔽 Auto Reset		Records	VPDL	Total Time (hour):	-6,1 V
Save	+/- 0,00	Scan		Stop	L VFDL	0	

北京波威科技有限公司

Wave Optics Co.,Ltd

Figure 5: Mode selection

- 5. Check the Reset button to restart the integrator.
- 6. The board should be in quad mode. If the optical power measured at the output is different from Pmax 3dB, and that the LED +/-Vbias sat. are not ON, you can adjust the power by changing the value of the fine gain and coarse gain of PD1.

Appendices

A. Mach-Zehnder intensity modulators

Lithium Niobate (LiNbO₃) Mach-Zehnder modulators (MZMs) are external modulators that have been widely used since the mid-nineties, mostly in long haul optical networks for their ability to modulate optical signal from 1300 nm and 1550 nm laser diodes with short transition times and without chirp compared to other techniques (direct laser diode current modulation for instance). Thanks to their broad wavelength performance, they currently also offer modulation solutions at 1064 nm, 850nm and other NIR laser wavelengths.

Mach-Zehnder modulators are 2-waves interferometer devices that exhibit a sine transfer function (Figure 6). Although MZMs are highly stable components, their operating point can suffer slow drifts due to variations of external conditions (like pressure and temperature for instance) and those drifts may induce key performances time fluctuations like the extinction ratio for example.

In order to adjust the operating point of LiNb MZMs independently from the RF modulation signal applied, the design can be done with two sets of electrodes: the RF set (the RF Electrodes) is used to apply the RF signal (PRBS data stream, analog signal, short pulses...). The DC set (the DC Electrodes) is applied to set the MZM operating point using a fixed voltage. Figure 7 illustrates the typical electrode architecture of LiNbO₃ MZMs.

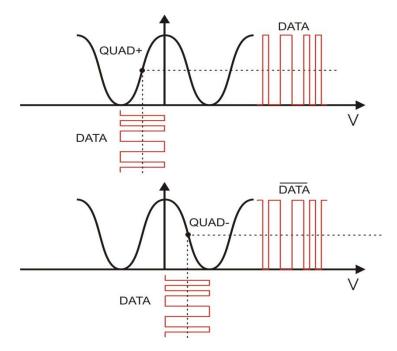


Figure 6 : Transfer function of a Mach-Zehnder modulator and data output vs. data input at QUAD+ and QUAD- operating point

北京波威科技有限公司

Beijing Wave Optics Co.,Ltd

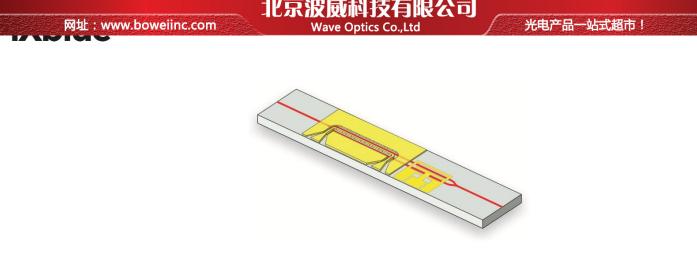


Figure 7: typical electrode and waveguide architecture of a Mach-Zehnder modulator

B. Drift effects

<u>**DC**</u> drift is the optical output power variation under the constant DC bias voltage application. Figure 8 shows the output power of the modulator as a function of the applied voltage. The broken line shows the output power as a function of applied voltage when only AC voltage is applied (and no DC is applied, at t = 0) and the solid line shows the same, after t = t1, when DC voltage is also applied in addition to the previous AC signal voltage. The shift between these two curves, ΔV , is the measure of the DC drift.

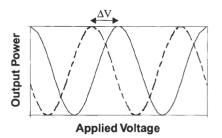


Figure 8: Output power of the modulator as the function of the driving voltage, with/without the DC applied voltage.

The DC drift physical mechanism and its causes are not yet well understood. But this can be attributed to the ions movement, including OH- ions, inside the Lithium Niobate substrate and the buffer layer. It is influenced by the balance of the RC time constants, in both horizontal and vertical directions in the equivalent circuit model, as is displayed in Figure 9. It was also found that the DC drift is more affected by the buffer layer. In the circuit model of Figure 8, all layers, including the LiNbO3 substrate, the Ti:LiNbO3 optical waveguide and the buffer layer, are represented in terms of resistances R and capacitances C, in both vertical and horizontal directions of the crystal.

北京波威科技有限公司

Beijing Wave Optics Co., Ltd

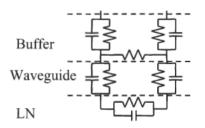


Figure 9:Equivalent RC circuit model of the MZM crystal electric structure, with vertical and horizontal components.

<u>Thermal and humidity drift</u> is the optical output power variations under temperature (respectively humidity) changes. Once the temperature changes, piezoelectric charges are induced on the surface of the LN substrate. This raises a surface charge distribution across the two arms of the interferometer, affecting the global electric field. This results into a shift in the switching curve, in the same way that operates the DC drift. Hence, to mitigate thermal effects, there is a need to distribute or dissipate the charges that are accumulating on the LiNbO3 crystal surfaces and between the electrodes.

